Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Nature ; 628(8006): 130-138, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38448586

RESUMO

Genome-wide association analyses using high-throughput metabolomics platforms have led to novel insights into the biology of human metabolism1-7. This detailed knowledge of the genetic determinants of systemic metabolism has been pivotal for uncovering how genetic pathways influence biological mechanisms and complex diseases8-11. Here we present a genome-wide association study for 233 circulating metabolic traits quantified by nuclear magnetic resonance spectroscopy in up to 136,016 participants from 33 cohorts. We identify more than 400 independent loci and assign probable causal genes at two-thirds of these using manual curation of plausible biological candidates. We highlight the importance of sample and participant characteristics that can have significant effects on genetic associations. We use detailed metabolic profiling of lipoprotein- and lipid-associated variants to better characterize how known lipid loci and novel loci affect lipoprotein metabolism at a granular level. We demonstrate the translational utility of comprehensively phenotyped molecular data, characterizing the metabolic associations of intrahepatic cholestasis of pregnancy. Finally, we observe substantial genetic pleiotropy for multiple metabolic pathways and illustrate the importance of careful instrument selection in Mendelian randomization analysis, revealing a putative causal relationship between acetone and hypertension. Our publicly available results provide a foundational resource for the community to examine the role of metabolism across diverse diseases.


Assuntos
Biomarcadores , Estudo de Associação Genômica Ampla , Metabolômica , Feminino , Humanos , Gravidez , Acetona/sangue , Acetona/metabolismo , Biomarcadores/sangue , Biomarcadores/metabolismo , Colestase Intra-Hepática/sangue , Colestase Intra-Hepática/genética , Colestase Intra-Hepática/metabolismo , Estudos de Coortes , Estudo de Associação Genômica Ampla/métodos , Hipertensão/sangue , Hipertensão/genética , Hipertensão/metabolismo , Lipoproteínas/genética , Lipoproteínas/metabolismo , Espectroscopia de Ressonância Magnética , Análise da Randomização Mendeliana , Redes e Vias Metabólicas/genética , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Complicações na Gravidez/sangue , Complicações na Gravidez/genética , Complicações na Gravidez/metabolismo
2.
Aging (Albany NY) ; 15(24): 14509-14552, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38149987

RESUMO

Glycans are an essential structural component of immunoglobulin G (IgG) that modulate its structure and function. However, regulatory mechanisms behind this complex posttranslational modification are not well known. Previous genome-wide association studies (GWAS) identified 29 genomic regions involved in regulation of IgG glycosylation, but only a few were functionally validated. One of the key functional features of IgG glycosylation is the addition of galactose (galactosylation), a trait which was shown to be associated with ageing. We performed GWAS of IgG galactosylation (N=13,705) and identified 16 significantly associated loci, indicating that IgG galactosylation is regulated by a complex network of genes that extends beyond the galactosyltransferase enzyme that adds galactose to IgG glycans. Gene prioritization identified 37 candidate genes. Using a recently developed CRISPR/dCas9 system we manipulated gene expression of candidate genes in the in vitro IgG expression system. Upregulation of three genes, EEF1A1, MANBA and TNFRSF13B, changed the IgG glycome composition, which confirmed that these three genes are involved in IgG galactosylation in this in vitro expression system.


Assuntos
Galactose , Estudo de Associação Genômica Ampla , Redes Reguladoras de Genes , Imunoglobulina G/genética , Polissacarídeos/metabolismo
3.
medRxiv ; 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37034709

RESUMO

Introduction: Epilepsy is a common central nervous system disorder characterized by abnormal brain electrical activity. We aimed to compare the metabolic profiles of plasma from patients with epilepsy across different etiologies, seizure frequency, seizure type, and patient age to try to identify common disrupted pathways. Material and methods: We used data from three separate cohorts. The first cohort (PED-C) consisted of 31 pediatric patients with suspicion of a genetic disorder with unclear etiology; the second cohort (AD-C) consisted of 250 adults from the Estonian Biobank (EstBB), and the third cohort consisted of 583 adults ≥ 69 years of age from the EstBB (ELD-C). We compared untargeted metabolomics and lipidomics data between individuals with and without epilepsy in each cohort. Results: In the PED-C, significant alterations (p-value <0.05) were detected in sixteen different glycerophosphatidylcholines (GPC), dimethylglycine and eicosanedioate (C20-DC). In the AD-C, nine significantly altered metabolites were found, mainly triacylglycerides (TAG), which are also precursors in the GPC synthesis pathway. In the ELD-C, significant changes in twenty metabolites including multiple TAGs were observed in the metabolic profile of participants with previously diagnosed epilepsy. Pathway analysis revealed that among the metabolites that differ significantly between epilepsy-positive and epilepsy-negative patients in the PED-C, the lipid superpathway (p = 3.2*10-4) and phosphatidylcholine (p = 9.3*10-8) and lysophospholipid (p = 5.9*10-3) subpathways are statistically overrepresented. Analogously, in the AD-C, the triacylglyceride subclass turned out to be statistically overrepresented (p = 8.5*10-5) with the lipid superpathway (p = 1.4*10-2). The presented p-values are FDR-corrected. Conclusion: Our results suggest that cell membrane fluidity may have a significant role in the mechanism of epilepsy, and changes in lipid balance may indicate epilepsy. However, further studies are needed to evaluate whether untargeted metabolomics analysis could prove helpful in diagnosing epilepsy earlier.

4.
Nat Commun ; 14(1): 1662, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36966134

RESUMO

A long-term objective of network medicine is to replace our current, mainly phenotype-based disease definitions by subtypes of health conditions corresponding to distinct pathomechanisms. For this, molecular and health data are modeled as networks and are mined for pathomechanisms. However, many such studies rely on large-scale disease association data where diseases are annotated using the very phenotype-based disease definitions the network medicine field aims to overcome. This raises the question to which extent the biases mechanistically inadequate disease annotations introduce in disease association data distort the results of studies which use such data for pathomechanism mining. We address this question using global- and local-scale analyses of networks constructed from disease association data of various types. Our results indicate that large-scale disease association data should be used with care for pathomechanism mining and that analyses of such data should be accompanied by close-up analyses of molecular data for well-characterized patient cohorts.

5.
Eur J Med Res ; 28(1): 133, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36966315

RESUMO

BACKGROUND: Ischemic stroke (IS) is a major health risk without generally usable effective measures of primary prevention. Early warning signals that are easy to detect and widely available can save lives. Estonia has one nation-wide Electronic Health Record (EHR) database for the storage of medical information of patients from hospitals and primary care providers. METHODS: We extracted structured and unstructured data from the EHRs of participants of the Estonian Biobank (EstBB) and evaluated different formats of input data to understand how this continuously growing dataset should be prepared for best prediction. The utility of the EHR database for finding blood- and urine-based biomarkers for IS was demonstrated by applying different analytical and machine learning (ML) methods. RESULTS: Several early trends in common clinical laboratory parameter changes (set of red blood indices, lymphocyte/neutrophil ratio, etc.) were established for IS prediction. The developed ML models predicted the future occurrence of IS with very high accuracy and Random Forests was proved as the most applicable method to EHR data. CONCLUSIONS: We conclude that the EHR database and the risk factors uncovered are valuable resources in screening the population for risk of IS as well as constructing disease risk scores and refining prediction models for IS by ML.


Assuntos
Registros Eletrônicos de Saúde , AVC Isquêmico , Humanos , Estônia/epidemiologia , Fatores de Risco , Biomarcadores
6.
Commun Biol ; 6(1): 6, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36596879

RESUMO

Refractive error, measured here as mean spherical equivalent (SER), is a complex eye condition caused by both genetic and environmental factors. Individuals with strong positive or negative values of SER require spectacles or other approaches for vision correction. Common genetic risk factors have been identified by genome-wide association studies (GWAS), but a great part of the refractive error heritability is still missing. Some of this heritability may be explained by rare variants (minor allele frequency [MAF] ≤ 0.01.). We performed multiple gene-based association tests of mean Spherical Equivalent with rare variants in exome array data from the Consortium for Refractive Error and Myopia (CREAM). The dataset consisted of over 27,000 total subjects from five cohorts of Indo-European and Eastern Asian ethnicity. We identified 129 unique genes associated with refractive error, many of which were replicated in multiple cohorts. Our best novel candidates included the retina expressed PDCD6IP, the circadian rhythm gene PER3, and P4HTM, which affects eye morphology. Future work will include functional studies and validation. Identification of genes contributing to refractive error and future understanding of their function may lead to better treatment and prevention of refractive errors, which themselves are important risk factors for various blinding conditions.


Assuntos
Miopia , Erros de Refração , Humanos , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Miopia/genética , Erros de Refração/genética , População Branca , População do Leste Asiático
7.
Nat Genet ; 54(9): 1332-1344, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36071172

RESUMO

Although physical activity and sedentary behavior are moderately heritable, little is known about the mechanisms that influence these traits. Combining data for up to 703,901 individuals from 51 studies in a multi-ancestry meta-analysis of genome-wide association studies yields 99 loci that associate with self-reported moderate-to-vigorous intensity physical activity during leisure time (MVPA), leisure screen time (LST) and/or sedentary behavior at work. Loci associated with LST are enriched for genes whose expression in skeletal muscle is altered by resistance training. A missense variant in ACTN3 makes the alpha-actinin-3 filaments more flexible, resulting in lower maximal force in isolated type IIA muscle fibers, and possibly protection from exercise-induced muscle damage. Finally, Mendelian randomization analyses show that beneficial effects of lower LST and higher MVPA on several risk factors and diseases are mediated or confounded by body mass index (BMI). Our results provide insights into physical activity mechanisms and its role in disease prevention.


Assuntos
Estudo de Associação Genômica Ampla , Comportamento Sedentário , Actinina/genética , Estudos Transversais , Exercício Físico/fisiologia , Humanos , Atividades de Lazer
8.
PLoS Med ; 18(9): e1003786, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34543281

RESUMO

BACKGROUND: Excess bodyweight and related metabolic perturbations have been implicated in kidney cancer aetiology, but the specific molecular mechanisms underlying these relationships are poorly understood. In this study, we sought to identify circulating metabolites that predispose kidney cancer and to evaluate the extent to which they are influenced by body mass index (BMI). METHODS AND FINDINGS: We assessed the association between circulating levels of 1,416 metabolites and incident kidney cancer using pre-diagnostic blood samples from up to 1,305 kidney cancer case-control pairs from 5 prospective cohort studies. Cases were diagnosed on average 8 years after blood collection. We found 25 metabolites robustly associated with kidney cancer risk. In particular, 14 glycerophospholipids (GPLs) were inversely associated with risk, including 8 phosphatidylcholines (PCs) and 2 plasmalogens. The PC with the strongest association was PC ae C34:3 with an odds ratio (OR) for 1 standard deviation (SD) increment of 0.75 (95% confidence interval [CI]: 0.68 to 0.83, p = 2.6 × 10-8). In contrast, 4 amino acids, including glutamate (OR for 1 SD = 1.39, 95% CI: 1.20 to 1.60, p = 1.6 × 10-5), were positively associated with risk. Adjusting for BMI partly attenuated the risk association for some-but not all-metabolites, whereas other known risk factors of kidney cancer, such as smoking and alcohol consumption, had minimal impact on the observed associations. A mendelian randomisation (MR) analysis of the influence of BMI on the blood metabolome highlighted that some metabolites associated with kidney cancer risk are influenced by BMI. Specifically, elevated BMI appeared to decrease levels of several GPLs that were also found inversely associated with kidney cancer risk (e.g., -0.17 SD change [ßBMI] in 1-(1-enyl-palmitoyl)-2-linoleoyl-GPC (P-16:0/18:2) levels per SD change in BMI, p = 3.4 × 10-5). BMI was also associated with increased levels of glutamate (ßBMI: 0.12, p = 1.5 × 10-3). While our results were robust across the participating studies, they were limited to study participants of European descent, and it will, therefore, be important to evaluate if our findings can be generalised to populations with different genetic backgrounds. CONCLUSIONS: This study suggests a potentially important role of the blood metabolome in kidney cancer aetiology by highlighting a wide range of metabolites associated with the risk of developing kidney cancer and the extent to which changes in levels of these metabolites are driven by BMI-the principal modifiable risk factor of kidney cancer.


Assuntos
Índice de Massa Corporal , Neoplasias Renais/sangue , Metaboloma , Obesidade/sangue , Idoso , Biomarcadores/sangue , Estudos de Casos e Controles , Europa (Continente)/epidemiologia , Feminino , Humanos , Incidência , Neoplasias Renais/diagnóstico , Neoplasias Renais/epidemiologia , Neoplasias Renais/genética , Masculino , Análise da Randomização Mendeliana , Metabolômica , Pessoa de Meia-Idade , Obesidade/diagnóstico , Obesidade/epidemiologia , Obesidade/genética , Estudos Prospectivos , Medição de Risco , Fatores de Risco , Vitória/epidemiologia
9.
Clin Rheumatol ; 40(10): 4157-4165, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34101054

RESUMO

BACKGROUND: Juvenile idiopathic arthritis (JIA) is the most common chronic rheumatic condition of childhood. Genetic association studies have revealed several JIA susceptibility loci with the strongest effect size observed in the human leukocyte antigen (HLA) region. Genome-wide association studies have augmented the number of JIA-associated loci, particularly for non-HLA genes. The aim of this study was to identify new associations at non-HLA loci predisposing to the risk of JIA development in Estonian patients. METHODS: We performed genome-wide association analyses in an entire JIA case-control sample (All-JIA) and in a case-control sample for oligoarticular JIA, the most prevalent JIA subtype. The entire cohort was genotyped using the Illumina HumanOmniExpress BeadChip arrays. After imputation, 16,583,468 variants were analyzed in 263 cases and 6956 controls. RESULTS: We demonstrated nominal evidence of association for 12 novel non-HLA loci not previously implicated in JIA predisposition. We replicated known JIA associations in CLEC16A and VCTN1 regions in the oligoarticular JIA sample. The strongest associations in the All-JIA analysis were identified at PRKG1 (P = 2,54 × 10-6), LTBP1 (P = 9,45 × 10-6), and ELMO1 (P = 1,05 × 10-5). In the oligoarticular JIA analysis, the strongest associations were identified at NFIA (P = 5,05 × 10-6), LTBP1 (P = 9,95 × 10-6), MX1 (P = 1,65 × 10-5), and CD200R1 (P = 2,59 × 10-5). CONCLUSION: This study increases the number of known JIA risk loci and provides additional evidence for the existence of overlapping genetic risk loci between JIA and other autoimmune diseases, particularly rheumatoid arthritis. The reported loci are involved in molecular pathways of immunological relevance and likely represent genomic regions that confer susceptibility to JIA in Estonian patients. Key Points • Juvenile idiopathic arthritis (JIA) is the most common childhood rheumatic disease with heterogeneous presentation and genetic predisposition. • Present genome-wide association study for Estonian JIA patients is first of its kind in Northern and Northeastern Europe. • The results of the present study increase the knowledge about JIA risk loci replicating some previously described associations, so adding weight to their relevance and describing novel loci. • The study provides additional evidence for the existence of overlapping genetic risk loci between JIA and other autoimmune diseases, particularly rheumatoid arthritis.


Assuntos
Artrite Juvenil , Predisposição Genética para Doença , Artrite Juvenil/genética , Estudos de Casos e Controles , Estônia , Estudo de Associação Genômica Ampla , Humanos , Polimorfismo de Nucleotídeo Único
10.
J Pers Med ; 11(5)2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33946982

RESUMO

The current paradigm of personalized medicine envisages the use of genomic data to provide predictive information on the health course of an individual with the aim of prevention and individualized care. However, substantial efforts are required to realize the concept: enhanced genetic discoveries, translation into intervention strategies, and a systematic implementation in healthcare. Here we review how further genetic discoveries are improving personalized prediction and advance functional insights into the link between genetics and disease. In the second part we give our perspective on the way these advances in genomic research will transform the future of personalized prevention and medicine using Estonia as a primer.

11.
Nat Commun ; 11(1): 1628, 2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-32242022

RESUMO

Polygenic Scores (PSs) describe the genetic component of an individual's quantitative phenotype or their susceptibility to diseases with a genetic basis. Currently, PSs rely on population-dependent contributions of many associated alleles, with limited applicability to understudied populations and recently admixed individuals. Here we introduce a combination of local ancestry deconvolution and partial PS computation to account for the population-specific nature of the association signals in individuals with admixed ancestry. We demonstrate partial PS to be a proxy for the total PS and that a portion of the genome is enough to improve susceptibility predictions for the traits we test. By combining partial PSs from different populations, we are able to improve trait predictability in admixed individuals with some European ancestry. These results may extend the applicability of PSs to subjects with a complex history of admixture, where current methods cannot be applied.


Assuntos
Predisposição Genética para Doença , Herança Multifatorial , Genética Populacional , Genótipo , Humanos , Modelos Genéticos , Fenótipo
12.
Sci Rep ; 9(1): 11623, 2019 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-31406173

RESUMO

Telomere shortening has been associated with multiple age-related diseases such as cardiovascular disease, diabetes, and dementia. However, the biological mechanisms responsible for these associations remain largely unknown. In order to gain insight into the metabolic processes driving the association of leukocyte telomere length (LTL) with age-related diseases, we investigated the association between LTL and serum metabolite levels in 7,853 individuals from seven independent cohorts. LTL was determined by quantitative polymerase chain reaction and the levels of 131 serum metabolites were measured with mass spectrometry in biological samples from the same blood draw. With partial correlation analysis, we identified six metabolites that were significantly associated with LTL after adjustment for multiple testing: lysophosphatidylcholine acyl C17:0 (lysoPC a C17:0, p-value = 7.1 × 10-6), methionine (p-value = 9.2 × 10-5), tyrosine (p-value = 2.1 × 10-4), phosphatidylcholine diacyl C32:1 (PC aa C32:1, p-value = 2.4 × 10-4), hydroxypropionylcarnitine (C3-OH, p-value = 2.6 × 10-4), and phosphatidylcholine acyl-alkyl C38:4 (PC ae C38:4, p-value = 9.0 × 10-4). Pathway analysis showed that the three phosphatidylcholines and methionine are involved in homocysteine metabolism and we found supporting evidence for an association of lipid metabolism with LTL. In conclusion, we found longer LTL associated with higher levels of lysoPC a C17:0 and PC ae C38:4, and with lower levels of methionine, tyrosine, PC aa C32:1, and C3-OH. These metabolites have been implicated in inflammation, oxidative stress, homocysteine metabolism, and in cardiovascular disease and diabetes, two major drivers of morbidity and mortality.


Assuntos
Homocisteína/metabolismo , Leucócitos/ultraestrutura , Metabolismo dos Lipídeos , Metabolômica/métodos , Telômero , Adulto , Idoso , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Encurtamento do Telômero
13.
Endocrinology ; 160(7): 1731-1742, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31125048

RESUMO

Most patients with pancreatic cancer present with advanced disease and die within the first year after diagnosis. Predictive biomarkers that signal the presence of pancreatic cancer in an early stage are desperately needed. We aimed to identify new and validate previously found plasma metabolomic biomarkers associated with early stages of pancreatic cancer. Prediagnostic blood samples from individuals who were to receive a diagnosis of pancreatic cancer between 1 month and 17 years after sampling (N = 356) and age- and sex-matched controls (N = 887) were collected from five large population cohorts (HUNT2, HUNT3, FINRISK, Estonian Biobank, Rotterdam Study). We applied proton nuclear magnetic resonance-based metabolomics on the Nightingale platform. Logistic regression identified two interesting hits: glutamine (P = 0.011) and histidine (P = 0.012), with Westfall-Young family-wise error rate adjusted P values of 0.43 for both. Stratification in quintiles showed a 1.5-fold elevated risk for the lowest 20% of glutamine and a 2.2-fold increased risk for the lowest 20% of histidine. Stratification by time to diagnosis suggested glutamine to be involved in an earlier process (2 to 5 years before diagnosis), and histidine in a process closer to the actual onset (<2 years). Our data did not support the branched-chain amino acids identified earlier in several US cohorts as potential biomarkers for pancreatic cancer. Thus, although we identified glutamine and histidine as potential biomarkers of biological interest, our results imply that a study at this scale does not yield metabolomic biomarkers with sufficient predictive value to be clinically useful per se as prognostic biomarkers.


Assuntos
Biomarcadores Tumorais/sangue , Glutamina/sangue , Histidina/sangue , Neoplasias Pancreáticas/diagnóstico , Idoso , Bancos de Espécimes Biológicos , Estudos de Casos e Controles , Diagnóstico Precoce , Europa (Continente) , Feminino , Humanos , Espectroscopia de Ressonância Magnética , Masculino , Metabolômica , Pessoa de Meia-Idade , Neoplasias Pancreáticas/sangue
14.
Am J Nephrol ; 49(3): 193-202, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30808845

RESUMO

BACKGROUND: Serum urea level is a heritable trait, commonly used as a diagnostic marker for kidney function. Genome-wide association studies (GWAS) in East-Asian populations identified a number of genetic loci related to serum urea, however there is a paucity of data for European populations. METHODS: We performed a two-stage meta-analysis of GWASs on serum urea in 13,312 participants, with independent replication in 7,379 participants of European ancestry. RESULTS: We identified 6 genome-wide significant single nucleotide polymorphisms (SNPs) in or near 6 loci, of which 2 were novel (POU2AF1 and ADAMTS9-AS2). Replication of East-Asian and Scottish data provided evidence for an additional 8 loci. SNPs tag regions previously associated with anthropometric traits, serum magnesium, and urinary albumin-to-creatinine ratio, as well as expression quantitative trait loci for genes preferentially expressed in kidney and gastro-intestinal tissues. CONCLUSIONS: Our findings provide insights into the genetic underpinnings of urea metabolism, with potential relevance to kidney function.


Assuntos
Rim/metabolismo , Locos de Características Quantitativas , Ureia/sangue , População Branca/genética , Biologia Computacional , Estudo de Associação Genômica Ampla , Humanos , Redes e Vias Metabólicas/genética , Polimorfismo de Nucleotídeo Único , Valores de Referência , Ureia/metabolismo
15.
BMC Bioinformatics ; 20(1): 22, 2019 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-30634901

RESUMO

BACKGROUND: Selection of interesting regions from genome wide association studies (GWAS) is typically performed by eyeballing of Manhattan Plots. This is no longer possible with thousands of different phenotypes. There is a need for tools that can automatically detect genomic regions that correspond to what the experienced researcher perceives as peaks worthwhile of further study. RESULTS: We developed Manhattan Harvester, a tool designed for "peak extraction" from GWAS summary files and computation of parameters characterizing various aspects of individual peaks. We present the algorithms used and a model for creating a general quality score that evaluates peaks similarly to that of a human researcher. Our tool Cropper utilizes a graphical interface for inspecting, cropping and subsetting Manhattan Plot regions. Cropper is used to validate and visualize the regions detected by Manhattan Harvester. CONCLUSIONS: We conclude that our tools fill the current void in automatically screening large number of GWAS output files in batch mode. The interesting regions are detected and quantified by various parameters by Manhattan Harvester. Cropper offers graphical tools for in-depth inspection of the regions. The tools are open source and freely available.


Assuntos
Gráficos por Computador , Interpretação Estatística de Dados , Mineração de Dados/métodos , Estudo de Associação Genômica Ampla/estatística & dados numéricos , Genômica/métodos , Software , Humanos , Fenótipo , Polimorfismo de Nucleotídeo Único
16.
Eur J Hum Genet ; 27(3): 442-454, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30420678

RESUMO

Pharmacogenomics aims to tailor pharmacological treatment to each individual by considering associations between genetic polymorphisms and adverse drug effects (ADEs). With technological advances, pharmacogenomic research has evolved from candidate gene analyses to genome-wide association studies. Here, we integrate deep whole-genome sequencing (WGS) information with drug prescription and ADE data from Estonian electronic health record (EHR) databases to evaluate genome- and pharmacome-wide associations on an unprecedented scale. We leveraged WGS data of 2240 Estonian Biobank participants and imputed all single-nucleotide variants (SNVs) with allele counts over 2 for 13,986 genotyped participants. Overall, we identified 41 (10 novel) loss-of-function and 567 (134 novel) missense variants in 64 very important pharmacogenes. The majority of the detected variants were very rare with frequencies below 0.05%, and 6 of the novel loss-of-function and 99 of the missense variants were only detected as single alleles (allele count = 1). We also validated documented pharmacogenetic associations and detected new independent variants in known gene-drug pairs. Specifically, we found that CTNNA3 was associated with myositis and myopathies among individuals taking nonsteroidal anti-inflammatory oxicams and replicated this finding in an extended cohort of 706 individuals. These findings illustrate that population-based WGS-coupled EHRs are a useful tool for biomarker discovery.


Assuntos
Anti-Inflamatórios/efeitos adversos , Registros Eletrônicos de Saúde/estatística & dados numéricos , Variantes Farmacogenômicos , Estônia , Humanos , Mutação com Perda de Função , Taxa de Mutação , Mutação de Sentido Incorreto , Polimorfismo de Nucleotídeo Único , alfa Catenina/genética
17.
Sci Rep ; 8(1): 15249, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30323304

RESUMO

Using targeted NMR spectroscopy of 227 fasting serum metabolic traits, we searched for novel metabolic signatures of renal function in 926 type 2 diabetics (T2D) and 4838 non-diabetic individuals from four independent cohorts. We furthermore investigated longitudinal changes of metabolic measures and renal function and associations with other T2D microvascular complications. 142 traits correlated with glomerular filtration rate (eGFR) after adjusting for confounders and multiple testing: 59 in diabetics, 109 in non-diabetics with 26 overlapping. The amino acids glycine and phenylalanine and the energy metabolites citrate and glycerol were negatively associated with eGFR in all the cohorts, while alanine, valine and pyruvate depicted opposite association in diabetics (positive) and non-diabetics (negative). Moreover, in all cohorts, the triglyceride content of different lipoprotein subclasses showed a negative association with eGFR, while cholesterol, cholesterol esters (CE), and phospholipids in HDL were associated with better renal function. In contrast, phospholipids and CEs in LDL showed positive associations with eGFR only in T2D, while phospholipid content in HDL was positively associated with eGFR both cross-sectionally and longitudinally only in non-diabetics. In conclusion, we provide a wide list of kidney function-associated metabolic traits and identified novel metabolic differences between diabetic and non-diabetic kidney disease.


Assuntos
Biomarcadores/sangue , Diabetes Mellitus Tipo 2/sangue , Testes de Função Renal/métodos , Rim/fisiologia , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Estudos de Coortes , Estudos Transversais , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/fisiopatologia , Nefropatias Diabéticas/sangue , Nefropatias Diabéticas/diagnóstico , Feminino , Taxa de Filtração Glomerular , Humanos , Masculino , Pessoa de Meia-Idade , Insuficiência Renal Crônica/sangue , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/diagnóstico
18.
Nat Genet ; 50(6): 834-848, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29808027

RESUMO

Refractive errors, including myopia, are the most frequent eye disorders worldwide and an increasingly common cause of blindness. This genome-wide association meta-analysis in 160,420 participants and replication in 95,505 participants increased the number of established independent signals from 37 to 161 and showed high genetic correlation between Europeans and Asians (>0.78). Expression experiments and comprehensive in silico analyses identified retinal cell physiology and light processing as prominent mechanisms, and also identified functional contributions to refractive-error development in all cell types of the neurosensory retina, retinal pigment epithelium, vascular endothelium and extracellular matrix. Newly identified genes implicate novel mechanisms such as rod-and-cone bipolar synaptic neurotransmission, anterior-segment morphology and angiogenesis. Thirty-one loci resided in or near regions transcribing small RNAs, thus suggesting a role for post-transcriptional regulation. Our results support the notion that refractive errors are caused by a light-dependent retina-to-sclera signaling cascade and delineate potential pathobiological molecular drivers.


Assuntos
Erros de Refração/genética , Adulto , Povo Asiático/genética , Cegueira/genética , Cegueira/metabolismo , Feminino , Regulação da Expressão Gênica , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla/métodos , Humanos , Masculino , Miopia/genética , Polimorfismo de Nucleotídeo Único , Erros de Refração/metabolismo , Retina/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Transdução de Sinais , População Branca/genética
19.
Alzheimers Dement ; 14(6): 707-722, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29316447

RESUMO

INTRODUCTION: Identifying circulating metabolites that are associated with cognition and dementia may improve our understanding of the pathogenesis of dementia and provide crucial readouts for preventive and therapeutic interventions. METHODS: We studied 299 metabolites in relation to cognition (general cognitive ability) in two discovery cohorts (N total = 5658). Metabolites significantly associated with cognition after adjusting for multiple testing were replicated in four independent cohorts (N total = 6652), and the associations with dementia and Alzheimer's disease (N = 25,872) and lifestyle factors (N = 5168) were examined. RESULTS: We discovered and replicated 15 metabolites associated with cognition including subfractions of high-density lipoprotein, docosahexaenoic acid, ornithine, glutamine, and glycoprotein acetyls. These associations were independent of classical risk factors including high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, triglycerides, glucose, and apolipoprotein E (APOE) genotypes. Six of the cognition-associated metabolites were related to the risk of dementia and lifestyle factors. DISCUSSION: Circulating metabolites were consistently associated with cognition, dementia, and lifestyle factors, opening new avenues for prevention of cognitive decline and dementia.


Assuntos
Biomarcadores/metabolismo , Disfunção Cognitiva/metabolismo , Demência/metabolismo , Adulto , Idoso , Doença de Alzheimer/metabolismo , Estudos de Coortes , Feminino , Humanos , Estilo de Vida , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA